Taguchi Experiment Design, a Realistic Approach to Weight Indicators of Employee Performance Evaluation

Authors
1 Assist prof. Department of Management, Yazd University, Yazd, Iran
2 M.A. of industrial management, Department of Management, Yazd University, Yazd, Iran
Abstract
Performance evaluation is prerequisite for many domains of human resource, which precise implementation of which will result in efficiency and effectiveness of performance feedbacking, training and development, promotion of employees, human resource planning, etc. Accurate weighting of evaluation indicators alongside with considering synergy and interaction force of indicators can affect evaluation results. Also differences of different levels of an indicator importance should be considered according to its great significance. This paper tries to realistically weight indicators using Taguchi experimental design method and considering two aforementioned points. An eight-stage model is presented and performance evaluation indicators for a bank cash register are specified. A questionnaire is designed based on proposed Taguchi orthogonal tables. Experts in banking sector are asked to answer the questions of each dimension to determine the weight of indicators. Results of implementing proposed model as ANOVA table show that Taguchi experimental design method can be a proper method in weighting indicators and taking into account the amount of error factor and decisions can be made according to stability of obtained results.
Keywords

 
[1] نجاری ر، نذرمحمدی م.؛ بررسی تطبیقی بازخورهای 180، 360، 540 و 720 درجه در ارزیابی عملکرد کارکنان، فصلنامه‌‌ی پژوهش‌‌های مدیریت منابع انسانی دانشگاه جامع امام حسین (ع)، سال دوم، شماره 1، 1389.
[2]       Jafari M,Bourouni A, HesamAmiri R. "A New framework for selection of the best performance appraisal method", European Journal of social Sience, Volume 7, Number 3, 2009.
[3]       Wang T, Huang C. "Improving forecasting performance by employing the Taguchi method", European Journal of Operational Research, 176. 2007.
[4]       Hong C. "Using the Taguchi method for effective market segmentation". Expert Systems with Applications, 39, 2012.
[5] زینالی الف، طراحی آزمایشات به روش تاگوچی با استفاده از نرم‌‌افزار Qualitek، تهران : نشر شرکت پژوهش و فناوری پتروشیمی، 1387.
[6]       KangN, Kim J, Park Y."Integration of marketing domain and R&D domain in NPD design process". Industrial Management & Data Systems.107 (6), 2007.
[7]       Yang T, Lin H, Chen M. "Meta modeling approach in solving the machine parameters optimization problem using neural network and genetic algorithms". Robotics and Computer-Integrated Manufacturing, 22, 2006.
[8]       Niska H, Hiltunen T, Karppinen A, Ruuskanen J,Kolehmaxinen M. "Evolving the neural network model for forecasting air pollution time series". Engineering Applications of Artificial Intelligence, 17, 2004.
[9]       Pitcher T, Buchary E, Hutton T. "Forecasting the benefits of no-take human-made reefs using spatial ecosystem simulation". Journal of Marine Science, 59, 2002.
[10]   Sepehrirad R, Azar A, Sadeghi A."Developing a hybrid mathematical model for 360-degree performance appraisal: A case study". Procedia - Social and Behavioral Sciences, 62, 2013.
[11]   SafarzadeganGilan S, Sebt M,Shahhosseini V. "Computing with words for hierarchical competency based selection of personnel in construction companies". Applied Soft Computing, 12, 2012.
[12]   Shahhosseini V, Sebt M. "Competency-based selection and assignment of human resources to construction projects". ScientiaIranica A, 18 (2), 2011.
[13] موحدی م، قاضی‌‌زاده فرد ض، داداشی الف.؛ ارائه‌‌ی الگویی مناسب برای ارزیابی عملکرد پژوهشگران سازمان‌‌های تحقیقات صنعتی، دو فصلنامه‌‌ی پژوهش‌‌های مدیریت منابع انسانی دانشگاه جامع امام حسین (ع)، سال سوم، شماره 2،  1390.
[14] بردبار غ، شاکری ف.؛ تحلیلی بر کیفیت شایسته‌گزینی مدیران گروه‌‌های آموزشی دانشگاه یزد، مجله علمی پژوهشی مدیریت تولید و عملیات. دوره دوم،پیاپی(3)،شماره(2)، 1390.
[15] شاه‌‌علیزاده کلخوران م، ضیائی م و، الوانی س‌‌م.؛ مدل انتخاب مدیران با متدولوژی AHP-DEMATEL، فصل‌‌نامه مدیریت، سال پنجم، شماره12، 1387.
[16]   Stevens J."Applied multivariate ststistics for the social sciences". 3rd edn", Mahvah, NJ: Lawwrence Erlbaum, 72, 1996.
[17]   Chena C, Linb C, Huang S. "A fuzzy approach for supplier evaluation and selection in supply chain management". Int. J. Production Economics, 102, 2006.