طراحی مدل احتمالاتی زنجیره تأمین پایدار در صنعت برق با نفوذ تولیدات تجدیدپذیر

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشجوی دکتری مدیریت صنعتی، دانشکده مدیریت، دانشگاه یزد، یزد، ایران.
2 دانشیار، گروه مدیریت، دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد، یزد، ایران.
چکیده
افزایش انتشار گازهای گلخانه‌ای، گرمایش زمین و حمایت دولت‌ها از منابع تجدید‌پذیر از یکسو و پیشرفت‌های اخیر در تولید برق و فناوری‌های مرتبط با آن ازسویدیگر باعث نفوذ تولیدات مبتنی بر انرژی‌های تجدیدپذیر در زنجیره تأمین شبکه برق شده است. نفوذ این منابع باوجود قطعیتنداشتن در توان خروجی آنها، برنامه‌ریزی زنجیره تأمین شبکه برق را با چالش‌های جدی مواجه کرده است. در این پژوهش یک روش مؤثر و کارآمد برای برنامه‌ریزی امنیتی و احتمالاتی توسعه زنجیره تأمین شبکه برق با درنظرگرفتن عدم قطعیت تولید منابع تجدیدپذیر و عدم قطعیت پیک بار مصرفی ارائه شده است. در روش پیشنهادی حد بالایی برای میزان قطع بار مجاز در نظر گرفته شده است و اثر عدم قطعیت‌های موجود و تغییرات حد بالای قطع بار بر هزینه سرمایهگذاری زنجیره تأمین ارزیابی شده است. روش پیشنهادی بهوسیله نرمافزار MATLAB روی شبکه پیاده‌سازی و بهوسیله الگوریتم ژنتیک حل شده است. مدل نهایی این روش را می‌توان بهطور مؤثر برای برنامه‌ریزی زنجیره تأمین شبکه برق با نفوذ تولیدات مبتنی بر انرژی‌های تجدیدپذیر بهکار گرفت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Designing a probabilistic model of sustainable supply chain in the electricity industry with the influence of renewable products

نویسندگان English

ahmad ghorbankhani 1
Ali Morovati Sharifabadi 2
Sayed Habibullah Mirghafouri 2
Sayed Haidar Mir Fakhreddini 2
1 PhD student in Industrial Management, Faculty of Management, Yazd University, Yazd, Iran.
2 Associate Professor, Department of Management, Faculty of Economics, Management and Accounting, Yazd University, Yazd, Iran
چکیده English

Increasing greenhouse gas emissions and global warming and government support for renewable sources, as well as recent advances in electricity generation and related technologies, have led to the penetration of renewable energy products in the electricity supply chain. The infiltration of these resources, despite the uncertainty in their output power, has faced serious challenges in power supply chain planning. In this research, an effective and efficient method for security and probabilistic planning of power supply chain development is presented, taking into account the uncertainty of renewable energy production and the uncertainty of peak consumption. In the proposed method, a high limit for the allowable load cut is considered and the effect of existing uncertainties and changes in the high load cut limit on the investment cost of the supply chain is evaluated. The proposed method is implemented on the network by MATLAB software and solved by genetic algorithm. The final model of this method can be used effectively to plan the supply chain of the electricity network with the influence of renewable energy products.

کلیدواژه‌ها English

Electricity industry
Sustainable supply chain
genetic algorithm
Uncertainty
Reliability
[1] S.-M. Hosseini-Motlagh, M. R. G. Samani, and V. Shahbazbegian, "Innovative strategy to design a mixed resilient-sustainable electricity supply chain network under uncertainty,"Applied Energy, vol. 280, 2020, p. 115.
[2] A. Jabbarzadeh, B. Fahimnia, and F. Sabouhi, "Resilient and sustainable supply chain design: sustainability analysis under disruption risks," International Journal of Production Research, vol. 56, no. 17, 2018 p. 5945.
[3] A. Jabbarzadeh, B. Fahimnia, and S. Rastegar, "Green and resilient design of electricity supply chain networks: a multiobjective robust optimization approach," IEEE Transactions on Engineering Management, vol. 66, no. 1, pp. 52-72, 2017.
[4] Y. Jiang, Y. Zhao, M. Dong, and S. Han, "Sustainable Supply Chain Network Design with Carbon Footprint Consideration: A Case Study in China," Mathematical Problems in Engineering, vol. 2019, 2019.
[5] M. A. Vahdatzad, V. Vahdat, A. T. Namin, and A. M. Rezai, "Energy Conservation Framework for Green Supply Chain Management," in Proceedings of the International Conference on Industrial Engineering and Operations Management, 2018, pp. 27-29.
[6] F. Bayatloo, "A Two-Stage Chance-Constraint Stochastic Programming Model for Electricity Supply Chain Network Design," International Journal of Industrial Engineering &Production Research, vol. 29, no. 4, 2018, p. 471.
[7] A. Nagurney and D. Matsypura, "A supply chain network perspective for electric power generation, supply, transmission, and consumption," in Optimisation, econometric and financial analysis: Springer, 2007, pp. 3-27.
[8] A. Nagurney and Z. Liu, "Transportation network equilibrium reformulations of electric power supply chain networks with computations," Isenberg School of Management, University of Massachusetts, Amherst, Massachusetts, 2005.
[9] A. Nagurney, Z. Liu, and T. Woolley, "Optimal endogenous carbon taxes for electric power supply chains with power plants," Mathematical and Computer Modelling, vol. 44, no. 9-10, 2006, pp. 899-916.
[10] A. Nagurney, Z. Liu, M.-G. Cojocaru, and P. Daniele, "Dynamic electric power supply chains and transportation networks: An evolutionary variational inequality formulation," Transportation Research Part E: Logistics and Transportation Review, vol. 43, no. 5, 2007, pp. 624-646.
[11] Z. Liu and A. Nagurney, "An integrated electric power supply chain and fuel market network framework: Theoretical modeling with empirical analysis for New England,"Naval Research Logistics(NRL), vol. 56, no.7,pp. 600,200
[12] S. Lai, H. Yang, X. Zhang, and L. Chen, "Nash equilibrium analysis of electric power supply chain with fuel supplier," in 2009 Asia-Pacific Power and Energy Engineering Conference, 2009: IEEE, pp. 1-4.
[13] S. Lai, H. Yang, Y. Dai, and L. Han, "A model for CO2 emission tax and the government control in electric power supply Chain," Transmission & Distribution Conference&Exposition:Asia and Pacific, 2009: IEEE, pp. 1-4.
[14] K. Wu, A. Nagurney, Z. Liu, and J. K. Stranlund, "Modeling generator power plant portfolios and pollution taxes in electric power supply chain networks: A transportation network equilibrium transformation," Transportation Research Part D: Transport and Environment, vol. 11, no. 3, 2006, p. 171.
[15] B. Qu and L. Lu, "Optimization model for electric power supply chain operation based on system engineering,", Engineering design and Manufacturing informatization, 2011, vol. 2: IEEE, pp. 77-80.
[16] L. Vance, H. Cabezas, I. Heckl, B. Bertok, and F. Friedler, "Synthesis of sustainable energy supply chain by the P-graph framework," Industrial & Engineering Chemistry Research, vol. 52, no. 1, 2013, pp. 266-274.
[17] H. Yang, C. Chung, and K. Wong, "Optimal fuel, power and load-based emissions trades for electric power supply chain equilibrium," IEEE Transactions on Power Systems, vol. 27, no. 3, 2012, pp. 1147-1157.
[18] A. Osmani and J. Zhang, "Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties," Energy, vol. 70, 2014, pp. 514-528.
[19] A. Khosrojerdi, S. H. Zegordi, J. K. Allen, and F. Mistree, "A method for designing power supply chain networks accounting for failure scenarios and maintenance," Engineering Optimization, vol. 48, no. 1, 2016, pp. 154-172.
[20] W. Li, Risk assessment of power systems: models, methods, and applications. John Wiley & Sons, 2014.
[21] L. L. Garver, "Transmission network estimation using linear programming," IEEE Transactions on Power Apparatus and Systems, no. 7, p. 1688, 1970.