Showing 4 results for Abdollahian
Mahmood Moradi, Atiyeh Safardoust, Farzaneh Abdollahian, Keykhosro Yakideh,
Volume 3, Issue 2 (9-2013)
Abstract
Error management culture is emerging concept which facilitates transferring and sharing the knowledge which obtained from organizational errors among employees and organizational units. This culture leads to improve learning processes among organizational units which denotes the concept of absorptive capacity. Knowledge gained from errors leads to improve organizational innovation which upgrade long-term organizational performance. This study examined the relationship between error management culture and organizational performance with consideration of the absorptive capacity role and innovative performance. All managers of pharmaceutical companies listed in Tehran Stock Exchange were selected as statistical society for this survey. Hypotheses were tested based on 153 collected questionnaires by structural equation modeling and regression analysis. Findings prove a positive relationship between variables. Absorptive capacity and innovative performance play the roles of mediators between error management culture and organizational performance.
Volume 13, Issue 13 (First Special Issue 2014)
Abstract
In this paper, exact closed-form solutions in explicit forms are presented to investigate small scale effects on the buckling of Lévy-type rectangular nanoplates based on the Reddy’s nonlocal third-order shear deformation plate theory. Two other edges may be restrained by different combinations of free, simply supported, or clamped boundary conditions. Hamilton’s principle is used to derive the nonlocal equations of motion and natural boundary conditions of the nanoplate. Two comparison studies with analytical and numerical techniques reported in literature are carried out to demonstrate the high accuracy of the present new formulation. Comprehensive benchmark results with considering the small scale effects on buckling load ratios and non-dimensional buckling loads of rectangular nanoplates with different combinations of boundary conditions are tabulated for various values of nonlocal parameters, aspect ratios and thickness to length ratios. Due to the inherent features of the present exact closed-form solution, the present findings will be a useful benchmark for evaluating the accuracy of other analytical and numerical methods, which will be developed by researchers in the future. Also, the present study may be useful for static and dynamic analysis of thicker nano scale plate-like structures, multi-layer graphene and graphite as composite or sandwich structures.
Volume 14, Issue 7 (10-2014)
Abstract
In this paper, exact closed-form solutions in explicit forms are presented to investigate small scale effects on the transverse vibration behavior of Lévy-type rectangular nanoplates based on the Reddy’s nonlocal third-order shear deformation plate theory. Two other edges may be restrained by different combinations of free, simply supported, or clamped boundary conditions. Hamilton’s principle is used to derive the nonlocal equations of motion and natural boundary conditions of the nanoplate. Two comparison studies with analytical and numerical techniques reported in literature are carried out to demonstrate the high accuracy of the present new formulation. Comprehensive benchmark results with considering the small scale effects on frequency ratios and non-dimensional fundamental natural frequencies of rectangular nanoplates with different combinations of boundary conditions are tabulated for various values of nonlocal parameters, aspect ratios and thickness to length ratios. Due to the inherent features of the present exact closed-form solution, the present findings will be a useful benchmark for evaluating the accuracy of other analytical and numerical methods, which will be developed by researchers in the future. Also, the present study may be useful for static and dynamic analysis of thicker nano scale plate-like structures, multi-layer graphene and graphite as composite or sandwich structures.
Volume 21, Issue 5 (May 2021)
Abstract
Supplementary firing system is one of the common methods of increasing the power generated of combined cycle units. Low cost of investment to the rate of increase of the generative power has encouraged the designers to use this method in the above power plants. In this article, field study of the performance changes of a real combined cycle unit with and without supplementary firing has been performed from energy and exergy viewpoints. Studies show that in all operation modes subject to research, using supplementary firing causes an increase in power generation up to 26.3MW, energy efficiency of steam cycle about 2.43% and decreases the exergy destruction of steam flow control valves. But this system has a negative impact on energy and exergy efficiencies of the whole combined cycle, which at the worth case about 1.17% decreases energy efficiency. In addition, it was specified that the power plants operation in the partial loads causes high exergy destruction in the cycle which steam cycle increased energy and exergy efficiencies due to use supplementary firing system cannot fully compensate it.